26 research outputs found

    Ensuring that the Sentinel-3A altimeter provides climate-quality data

    Get PDF
    Sentinel-3A, launched in February 2016, is part of ESA's long-term commitment to climate monitoring from space. Its suite of instruments for measuring surface topography includes a Microwave Radiometer (MWR) and SRAL, the first delay-Doppler instrument to provide global coverage. SRAL promises fine spatial resolution and reduced noise levels that should together lead to improved performance over all Earth surfaces. The Sentinel-3 Mission Performance Centre (S3MPC) has been developing the methodology to evaluate the accuracy of retrievals, monitor any changes and develop solutions to known problems. The S3MPC monitors internal temperatures, path delays and the shape of the generated pulses to assess the instruments health. The MWR records over known reference surfaces are compared with those from other spaceborne instruments. Over the ocean the SRAL's return pulses are analysed to give range to the sea surface, wave height and signal strength (which can be interpreted as wind speed). The metocean data are regularly contrasted with records from in situ measurements and the output from meteorological models, which rapidly highlights the effects of any changes in processing. Range information is used to give surface elevation, which is assessed in three ways. First, flights over a dedicated radar transponder provide an estimate of path delay to within ~10 mm (r.m.s.). Second, measurements are compared to GPS- levelled surfaces near Corsica and over Lake Issyk-kul. Third, there are consistency checks between ascending and descending passes and with other missions. Further waveform analysis techniques are being developed to improve the retrieval of information over sea-ice, land-ice and inland waters

    The Sentinel-3 Mission Performance Center

    Get PDF
    As part of the Sentinel-3 mission and in order to ensure the highest quality of products, ESA in cooperation with EUMETSAT has set up the Sentinel-3 Mission Performance Centre (S-3 MPC). This facility is part of the Payload Data Ground Segment (PDGS) and aims at controlling the quality of all generated products, from L0 to L2. The S-3 MPC is composed of a Coordinating Centre (CC), where the core infrastructure is hosted, which is in charge of the main routine activities (especially the quality control of data) and the overall service management. Expert Support Laboratories (ESLs) are involved in calibration and validation activities and provide specific assessment of the products (e.g., analysis of trends, ad hoc analysis of anomalies, etc.). The S-3 MPC interacts with the Processing Archiving Centres (PACs) and the Marine centre at EUMETSAT

    The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations

    Get PDF
    The Sentinel-3 Mission Performance Centre (S3MPC) is tasked by the European Space Agency (ESA) to monitor the health of the Copernicus Sentinel-3 satellites and ensure a high data quality to the users. This paper deals exclusively with the effort devoted to the altimeter and microwave radiometer, both components of the Surface Topography Mission (STM). The altimeters on Sentinel-3A and -3B are the first to operate in delay-Doppler or SAR mode over all Earth surfaces, which enables better spatial resolution of the signal in the along-track direction and improved noise reduction through multi-looking, whilst the radiometer is a two-channel nadir-viewing system. There are regular routine assessments of the instruments through investigation of telemetered housekeeping data, calibrations over selected sites and comparisons of geophysical retrievals with models, in situ data and other satellite systems. These are performed both to monitor the daily production, assessing the uncertainties and errors on the estimates, and also to characterize the long-term performance for climate science applications. This is critical because an undetected drift in performance could be misconstrued as a climate variation. As the data are used by the Copernicus Services (e.g., CMEMS, Global Land Monitoring Services) and by the research community over open ocean, coastal waters, sea ice, land ice, rivers and lakes, the validation activities encompass all these domains, with regular reports openly available. The S3MPC is also in charge of preparing improvements to the processing, and of the development and tuning of algorithms to improve their accuracy. This paper is thus the first refereed publication to bring together the analysis of SAR altimetry across all these different domains to highlight the benefits and existing challenges

    Sentinel-3 Mission Performance Centre: Ensuring a high-quality altimetric dataset

    Get PDF
    Sentinel-3A is scheduled for launch in Oct. 2015, with Sentinel-3B to follow 18 months later. Together these missions are to take oceanographic remote-sensing into a new operational realm. To achieve this a large number of processing, calibration and validation tasks have to be applied to their data in order to assess for quality, absolute bias, short-term changes and long-term drifts. ESA has funded the Sentinel-3 Mission Performance Centre (S3MPC) to carry out this evaluation on behalf of ESA and EUMETSAT. The S3MPC is run by a consortium led by ACRI [1] and this paper describes the work on the calibration/validation (cal/val) of the Surface Topography Mission (STM), which is co-ordinated by CLS and PML

    Corsica: A 20-Yr Multi-Mission Absolute Altimeter Calibration Site

    No full text
    International audienceInitially developed for monitoring the performance of TOPEX/Poseidon and follow-on Jason legacy satellite altimeters, the Corsica geodetic facilities that are located both at Senetosa Cape and near Ajaccio have been developed to calibrate successive satellite altimeters in an absolute sense. Since 1998, the successful calibration process used to calibrate most of the oceanographic satellite altimeter missions has been regularly updated in terms of in situ instruments, geodetic measurements and methodologies. In this study, we present an assessment of the long-term stability of the in situ instruments in terms of sea level monitoring that include a careful monitoring of the geodetic datum. Based on this 20-yr series of sea level measurements, we present a review of the derived absolute Sea Surface Height (SSH) biases for the following altimetric missions based on the most recent reprocessing of their data set: TOPEX/Poseidon and Jason-1/2/3, Envisat and ERS-2, CryoSat-2, SARAL/AltiKa and Sentinel-3A&B. For the longest time series the standard error of the absolute SSH biases is now at a few millimeters level which is fundamental to maintain the high level of confidence that scientists have in the global mean sea level rise

    Evaluation of new CryoSat-2 products over the ocean

    No full text
    The CryoSat-2 satellite, primarily dedicated to precise monitoring of the Cryosphere, is demonstrating its capability to provide valuable altimetric data also over the ocean. Here we present the results of a global assessment and validation of the new Geophysical Ocean Product (GOP) distributed by the European Space Agency (ESA) since April 2014, focusing on the sea surface height anomaly (SSHA), the significant wave height (SWH), and the wind speed. Our assessment involves only Low Resolution Mode (LRM) and Pseudo LRM (PLRM) data, since full SAR processing is not already operationally implemented in the GOP. The global assessment is conducted on the basis of measurement noise and along-track spectral and crossover analysis, whereas the validation is performed against a variety of in situ observations such as tide gauges, buoys and Argo floats as well as data from the WaveWatch III (WWIII) model. The performance of the GOP is compared to that of Jason-2 and CryoSat-2 data from the Radar Altimeter Database System (RADS). The mean value of the 20-Hz SSHA noise at 2 m SWH is 6.3 cm for LRM and 10.2 cm for PLRM, and the standard deviation of the crossovers is ~ 5.4 cm. The mean 20-HZ SWH noise over the global oceans is 49.4 cm and 69.8 cm, for LRM and PLRM respectively. CryoSat-2 and Jason-2 show almost identical performance when SSHAs are validated against tide gauges, with a median correlation and root mean square difference (RMSD) of 0.78 and 7.1 cm for the GOP, 0.76 and 7.3 cm for Jason-2, and 0.79 and 7.8 cm for CryoSat-2 from RADS. The median correlation with Argo-derived steric heights is 0.68 for the GOP, 0.74 for Jason-2, and 0.67 for CryoSat-2 from RADS. However, the correlation shows a strong latitudinal dependence, with higher values at low latitudes (median value larger than 0.80 in the 10°S-10°N band). The median RMSD between the SSHAs and steric heights is 5.3 cm for the GOP, 4.6 cm for Jason-2, and 5.1 cm for CryoSat-2 from RADS. The GOP and Jason-2 show also identical performance when SWHs are compared to buoy data, with a slope and RMS error of 0.98 and 15 cm for GOP, 0.97 and 16 cm for Jason-2, and 1.05 and 17 cm for CryoSat-2 from RADS. On the other hand, the GOP wind speed exhibits a bias of about 2 m/s relative to both Jason-2 and to buoy data. Differences between the GOP and WWIII SWH are smaller than 20% of the SWH almost everywhere. In summary the GOP products are fit for oceanographic applications

    An Action Plan Towards Fiducial Reference Measurements for Satellite Altimetry

    No full text
    Satellite altimeters have been producing, as of 1992, an amazing and historic record of sea level changes. As Europe moves into full operational altimetry, it has become imperative that the quality of these monitoring signals with their uncertainties should be controlled, fully and properly descripted, but also traced and connected to undisputable standards and units. Excellent quality is the foundation of these operational services of Europe in altimetry. In line with the above, the strategy of the Fiducial Reference Measurements for Altimetry (FRM4ALT) has been introduced to address and to achieve reliable, long-term, consistent, and undisputable satellite altimetry products for Earth observation and for sea-level change monitoring. FRM4ALT has been introduced and implemented by the European Space Agency in an effort to reach a uniform and absolute standardization for calibrating satellite altimeters. This paper examines the problem and the need behind the FRM4ALT principle to achieve an objective Earth observation. Secondly, it describes the expected FRM products and services which are to come into being out of this new observational strategy. Thirdly, it outlines the technology and the services required for reaching this goal. And finally, it elaborates upon the necessary resources, skills, partnerships, and facilities for establishing FRM standardization for altimetry
    corecore